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요 약

최근 Gaussian Splatting (GS)은 미분가능 레스터라이제이션을 통해 고충실도의 3차원 인간 아바타 재구성 및 실시간 렌더링을 가

능케한다. 하지만 재구성된 Gaussian들이 실제 3차원 기하표면을 정확히 표현하지 못하고 다른 그래픽스 어플리케이션에 기하 오류를

야기한다. 우리는 GS 기반 아바타 재구성의 기하 정확성을 향상시키기 위해 단안 기하학적 단서를 최적화 과정에 활용한다. 구체적으

로, 최신 단안 법선 및 깊이 추정 모델을 통해 이미지로부터 단안 기하 단서를 획득하고 이를 3차원 Gaussian들이 표현하는 3차원 표

면에 강제하여 실제 표면과 근접하도록 한다. 본 연구에서는 단안 기하 단서의 유효성을 입증하고자 인간 단안시점 영상 데이터셋에서

재구성한 Gaussian 모델의 기하 정확성 및 렌더링 품질을 비교한다. 실험 결과, 단안 단서 조건항을 GS 아바타 재구성에 적용했을 때

렌더링 품질과 기하 정확성 모두에서 향상된 결과를 확인했다.

Abstract

Recently, Gaussian Splatting (GS) has been widely used in avatar reconstruction, achieving high-fidelity and real-time rendering 
by utilizing a differentiable rasterizer. Despite its remarkable performance, reconstructed Gaussians are often misaligned from the 
actual surface which leads to geometric errors. We propose to utilize monocular geometric cues in optimization in order to 
improve the geometric accuracy of GS-based human avatar reconstruction. We obtain monocular geometric cues from images using 
recent monocular depth and normal estimation models. The monocular geometric cues encourage 3D Gaussians to be aligned with 
the ground-truth surface. To prove the effectiveness of monocular geometric cues, we conduct the ablation study and measure 
geometric accuracy and rendering quality of 3D Gaussians reconstructed from monocular video human dataset. We demonstrate 
improvements in both rendering quality and geometric accuracy in GS avatar reconstruction with monocular geometric consistency 
term.
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Ⅰ. Introduction

Realistic avatar reconstruction has been intensively stud-
ied towards the seamless connection between the real and 
the virtual world. However, there is a trade-off between re-
construction quality and speed. Implicit function based ap-
proaches PIFu[11] achieve fast inference for 3D human ava-
tars but require a huge training cost and large human scan-
ning datasets, resulting in low geometric accuracy. In con-
trast, neural-based surface reconstruction NeRF[25] has been 
widely used in avatar reconstruction, especially for novel 
view synthesis, due to its outstanding rendering quality. 
Nevertheless, inverse skinning, fast reconstruction and re-
al-time rendering are still challenging with neural 
representations. 

Recently, Gaussian Splatting (GS)[2] has been proposed 
for addressing both reconstruction quality and speed in 
training and rendering. GS applied in avatar reconstruction 
is compatible with skinning methods , thanks to its explicit 
point-based representation. However, as noted in works 
like SuGaR[23] and 2DGS[24], GS suffer from misalignment 
between the reconstructed Gaussians and the ground-truth 
surface.

Inspired by MonoSDF[1], we propose a method that im-
proves the geometric accuracy of Gaussians by utilizing 
monocular geometric cues in training. We align monocular 
depth maps to rendered depth maps by adjusting the scale 
and the depth offset using a least-square method. Then, we 

encourage the Gaussians to be aligned to the aligned mon-
ocular depth cue. We demonstrate that utilizing monocular 
cues on 3D human avatar reconstruction improves both the 
geometric and rendering quality.

Ⅱ. Related Work

1. Monocular Geometric Cue Estimation

MonoSDF[1] demonstrates that the use of a gen-
eral-purpose monocular estimator significantly improves 
both reconstruction quality and geometric accuracy for 
large scenes. Omnidata[3], used in [1], estimates monocular 
depth cues for a wide range of scenes. DN-Splatter[20] uti-
lizes Omnidata and ZoeDepth[4] to enhance the geometry 
alignment in Gaussian Splatting using monocular depth and 
normal cues. ZoeDepth extends the relative depth pre-
diction of MiDaS. Metric3Dv2[9] is a monocular estimation 
method based on Vision Transformer and ConvGRU. It ad-
dresses depth ambiguity by transforming images into the 
canonical camera space. To overcome the scarcity of sur-
face normal datasets, Metric3Dv2 uses joint learning for 
depth and normal. DepthAnythingv2[8] employs a teach-
er-student framework, where the teacher is trained on syn-
thetic datasets to circumvent the noise and incompleteness 
in real-world datasets. Recently, diffusion models like 
Marigold[6] and GeoWizard[7] have been proposed. 
Marigold, a depth estimation model, proposes training sole-
ly on synthetic datasets. GeoWizard introduces a cross-
attention mechanism to ensure consistency between depth 
and normal predictions. However, diffusion-based models 
are known to be time-consuming. 

On the other hand, ECON[13] introduces a normal in-
tegration method for reconstructing clothed humans from 
a single image. It estimates the front and back normal maps 
using a GAN-based model, as seen in [12], and this normal 
estimator can serve as a monocular cue. Additionally, the 
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recent model Sapiens[10], based on a Vision Transformer, 
offers broad applicability to various human-related tasks. 
To enhance generalizability, it uses the Human-300M data-
set for pretraining, achieving state-of-the-art performance.

2. Gaussian splatting in Avatar Reconstruction

Gaussian splatting (GS) has been applied to various 
fields of 3D reconstruction due to its reconstruction quality 
along with fast training and rendering times. However, the 
reconstructed Gaussians are not aligned with the actual 
geometric surfaces. To address this, SuGaR[23] introduces 
regularization for Gaussian shapes and locations, while 
2DGS[24] and GaussianSurfel[21] propose 2D Gaussians to 
resolve multi-view inconsistencies. Nevertheless, they do 
not address dynamic scenes or have not explored recent 
monocular estimators. 

Some GS-based avatar reconstruction methods have been 
proposed. [15] uses pose features to decode Gaussian pa-
rameters for dynamic texture representation. [16] re-
construct a template by multi-view stereo then learns a net-
work to estimate Gaussian maps from a position map at 
each time step. GART[14], on the other hand, employs a 

learnable skeleton to represent loose clothing. Though 
these models show high rendering quality, they still suffer 
from inaccurate 3D surfaces reconstructed by Gaussians. 
We improve 3D avatar reconstruction using monocular 
geometric cues. We compare different monocular geo-
metric estimators in terms of depth and normal accuracy 
on human datasets.

III. Method

1. Preliminary: Gaussian Splatting 

3D Gaussian Splatting (3DGS)[2] introduces volumetric 
3D Gaussians to represent 3D scenes. Each 3D Gaussian 
represents a small cloud, having positional and radiometric 
properties such as mean position , rotation , scale , 
opacity , and view dependent color  . Then, the Gaussian 
distribution at position x is parametrized by  and 3D co-
variance matrix ∑   as below:

 exp  (1)

The 3D Gaussian is splatted onto the image plane by the 

그림 1. 단안기하단서를 활용한 Gaussian Splatting 아바타 재구성 파이프라인 개요

Fig. 1. Overview of Gaussian Splatting avatar reconstruction using monocular geometric cues
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elliptical weighted average (EWA) approximation since 
there is no analytic form to represent Gaussian projection. 
To accelerate the Gaussian rendering process and make it 
differentiable, the Gaussian renderer is implemented as the 
GPU-parallelized differentiable rasterizer. The rasterizer 
sorts Gaussians by depth from the view-point in fast 
tile-based approach. Then, Gaussians are blended with oth-
er Gaussians using the alpha-blending technique as shown 
in Equation 2:

     
    (2)

where   is color of a pixel x , x  is a dis-

tribution of the ith Gaussian along ray x ,  and  are an 
opacity and a distribution of the jth intersected Gaussian 
before the ith Gaussian.

The goal of optimizing 3D Gaussians is to encourage 
rendered images   aligned with ground-truth images  
so that Gaussians represent the appearance of the 3D scene. 
To this end, the difference between two images is com-
puted as an objective function of the optimization process. 
This photometric loss  is computed as the combination 
of0  loss and   loss.

     (3)

During optimization, overly-large Gaussians or sparse-
ly-distributed Gaussians are struggling to reconstruct the 
surface and its texture. To alleviate this problem, 3DGS 
clone Gaussians in under-reconstructed regions and split 
large Gaussians in over-reconstructed regions.

2. Overview

We set GART[14], which is the state-of-the-art avatar re-
construction model by combining 3DGS with avatar re-

construction, as the baseline for our clothed human 
reconstruction. We first initialize Gaussians on the 3D 
body template mesh defined in the canonical space in 
Section 3.3. Then, Gaussians are deformed into the frame 
space by LBS in Section 3.4. and rendered into images. 
Our Gaussians learn the avatar’s shape and appearance 
while minimizing the loss introduced in Section 3.5. The 
implementation details are described in Section 3.6.

3. Initialization

We define the canonical space of the avatar as the space 
with a “Da”-posed 3D body template as shown in Figure 
1. “Da”-pose is a stance where the arms and legs are spread 
out wide to the both sides and it allows to reconstruct con-
cave regions since a stretching-out stance reduces occlu-
sions and overlaps between body parts. We locate 
Gaussians on the canonical mesh vertices. The orientation 
of each Gaussian aligns with normal of the mesh, scale is 
proportional to the face area, the opacity and the color are 
set to 0.9 and 0.5, respectively.

4. Deformation

Gaussians in the canonical space are animated according 
to the SMPL parameters   at time  based on LBS. While 
the pose changes, the effects of key points on adjacent sur-
faces vary. We update the blending weight  of the kth 
key-point motion at each ith Gaussian by ∆:

∆ (4)

In clothed human reconstruction, it is challenging to de-
scribe cloth deformation by the traditional skinning method 
which represents deformation of a human skin. To account 
for dynamic cloth surfaces, we employ learnable latent 

bones        to increase the expressivity of 
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the surface deformation model:

  
   

 (5)

 ′       (6)

where  indexes over Gaussians, ′ is a deformed 

Gaussian mean position to time  frame space,  is the 
blending weight of latent bones and       
are SMPL bones.  and  are number of SMPL bones 
and latent bones respectively. Then, Gaussians in the posed 
space are rendered into a RGB image, a normal map, and 
a depth map to compute loss and optimize Gaussians by 
following Section 3.5.

5. Optimization

We train Gaussians defined in the canonical space, their 
temporal deformation field for a given pose sequence dur-
ing optimization. To make Gaussians of an avatar learn the 
appearance and 3D surface, we penalize the difference be-
tween rendered images and captured images and leverage 
the monocular geometric prior to enhance the surface 
details.

The photometric consistency loss  is the radiometric 
difference between the reconstructed video frames   and observations  :

         (7)

where  is a time index. We penalize the photometric con-
sistency loss to enhance the reconstruction fidelity.

The photometric consistency loss may not be sufficient 
to reconstruct smooth and natural surfaces. To resolve this 
issue, we leverage monocular geometric priors [1], which 

represent general surface shapes for given observation, 
in order to facilitate natural surface reconstruction. We 
encourage the reconstruction to have general surface 
orientations by fitting normal with monocular ob-
servation:

  ‖ ‖  ‖ ‖ (8)

where  is rendered normal and  is monocu-
larly estimated normal.

We also utilize a monocular depth prior, representing the 
relative distance among pixels. We align the monocular 
depth map  to the reconstructed depth map   
by scaling  and shifting  since there is the scale and 
shift ambiguity in monocular depth estimation:

  ‖ ‖ (9)

We encourage the smooth appearance by minimizing the 
standard deviation of Gaussian properties among K-nearest 
points:

  ∈∈
where   is a property of the ith Gaussian. In ad-

dition, We regularize non-rigid motion and size of 
Gaussians:

  ∥∆∥∥ ∥∥∥∞ (11)

where   means the ith Gaussian.
The total loss is sum of all loss terms for N Gaussians:

     
   

    (12)

(10)
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6. Implementation Details

We jointly train Gaussian properties and motion pa-
rameters by applying the Adam optimizer with learn-
ing rates for each parameter the same as in [14], and 
other Adam hyperparameters are left at their default 
values of  ,  , and  . We set  
for each loss term as  ,    and 
    the same as in [14]. The Gaussian pa-

rameters are optimized by stochastic gradient descent 
method for each time step  where  is randomly sampled 
from the training input video frame sequence. The entire 
framework is trained and tested on a single NVIDIA RTX 
A6000 GPU, with training times within 5 minutes and 
rendering times about 150 FPS.

Ⅳ. Experiments

1. Comparison between Monocular Estimators

Our Gaussian avatar learns surface of the object from 
monocular geometric cues. This makes the reconstruction 
quality of our method depend on monocular cue estimator 
performance. Thus, we analyze the state-of-the-art monocu-
lar normal and depth estimation models by qualitative and 
quantitative comparisons.

We evaluate the performance of normal and depth es-
timation of monocular estimators. We use the 
Thuman3.0[17] dataset, a real-world capture dataset of 
clothed humans which includes a variety of human and 
clothing scenes. It consists of 20 different clothed hu-
mans, each including between 15 to 35 pose sequences. 
For our evaluation, we select 5 poses from each clothed 
human. Since captured images are not provided, we syn-
thesize multi-view images of scenes using the provided 
meshes and textures. For rendering, 8 point lights are 
placed at vertices of the bounding box surrounding the 

human mesh. We render four images from the front, 
back, and sides. The RGB images are used as input for 
the monocular estimation models, while rendered nor-
mal and depth maps are served as ground-truth data for 
evaluation.

1.1. Comparison on Surface Normal Estimation
We compare monocular estimators in terms of normal 

prediction. The evaluation metric “angular mean” repre-
sents the average angular distance, measured in degree, be-
tween rendered normals and the ground-truth. Lower val-
ues indicate better performance. The “ratio within x” met-
ric represents the ratio of pixels whose angular distance 
with the ground-truth is less than x degrees. Higher ratio 
indicates higher performance. For Omnidata[3], we use two 
approaches proposed in DN-Splatter[20]: Omnidata-low and 
Omnidata-hd. The Omnidata-low approach resizes an input 
image, estimates normals, then resizes it back to the origi-
nal resolution. The Omnidata-hd approach divides an input 
image into patches with overlaps and aggregates estimated 
normals of patches by aligning them with others.

In the case of Marigold[6], whose original version only 
estimate depth, we use the normal pretrained model avail-
able on Hugging Face. For Sapiens[10], we use the 
Sapiens-2B model trained with 2 billion parameters.

Table 1 shows that Omnidata-hd performs better than 
Omnidata-low. However, both Omnidata-based methods 
exhibit lower performance than other methods, indicating 
inadequacy of the model for human scenes. Vision 
Transformer-based models like Metric3Dv2[9] and 
Sapiens-2B outperform diffusion-based models like 
Marigold and GeoWizard[7], and ECON[13] demonstrates 
competitive results. GeoWizard, in particular, shows sub-
optimal performance in normal prediction. In contrast, 
Sapiens, which leverages pretraining on a large human-cen-
tric dataset, achieves the highest performance among the 
evaluated models.

Figure 2 illustrates the qualitative performance of mon-
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ocular estimators. Omnidata-low lacks detail due to its 
resolution limitations, and while Omnidata-hd addresses 
alignment in the overlap regions, it still struggles with 
overall consistency. ECON captures large wrinkles well 
but fails to estimate precise normal direction. Marigold 
captures details effectively but lacks a sense of depth. 
Metric3Dv2 is highly accurate but suffers from in-
accurate facial normals due to limited exposure to hu-
man scenes during training. Sapiens produces results 
close to the ground truth.

1.2 Comparison on Monocular Depth Estimation
We measure two depth metrics for the comparison of 

monocular estimators: AbsRel and . AbsRel represents 

the relative difference  between the ground-truth 
depth map  and the estimated depth map  with scale and 
shift adjustment.  represents the percentage of pixels 
whose ratio between the ground-truth and predicted values 
is below the threshold (1.25). We use the implementation 
of ZoeDepth[4] in DN-Splatter.

Table 2 demonstrates that Metric3Dv2 and Sapiens out-
perform other methods significantly. GeoWizard shows 
comparable performance to Marigold and ZoeDepth. 
Conversely, DepthAnythingv2[8] produces results that de-
viates significantly from the ground truth. Overall, Sapiens 
demonstrates the most realistic results.

Omnidata-low Omnidata-hd ECON Metric3Dv2 Marigold Geowizard Sapiens-2B

Angular Mean (degree °) 31.3234 29.2753 22.4001 17.5526 20.0852 51.5194 13.2728

Ratio within 11.25° (%) 11.1618 13.4923 26.8539 38.3021 31.1509 6.1990 57.0686

Ratio within 30° (%) 54.2361 59.6652 76.7818 86.3450 80.9942 29.0239 92.4686

표 1. 단안 표면 법선 예측 모델의 양적 비교 (빨간색: 1등, 파란색: 2등)
Table 1. Quantitative comparison of monocular normal estimation models (Red: 1st place, Blue: 2nd place)

ZoeDepth DepthAnythingv2 Metric3Dv2 Marigold Geowizard Sapiens-2B

AbsRel 0.0321 0.1745 0.0197 0.0357 0.0327 0.0129

 0.9989 0.7008 0.9999 0.9958 0.9937 1.0000

표 2. 단안 깊이 예측 모델의 양적 비교 (빨간색: 1등, 파란색: 2등)
Table 2. Quantitative comparison of monocular depth estimation models (Red: 1st place, Blue: 2nd place)

그림 2. 단안 표면 법선 예측 모델의 질적 비교

Fig 2. Qualitative comparison of monocular surface normal estimation models
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Figure 3 illustrates qualitative performance of monocular 
estimators. DepthAnythingv2 fails to align the scale and 
shift correctly due to the large difference between the mini-
mum and maximum depth scales. ZoeDepth, Marigold, and 
GeoWizard appear to lack high-frequency details. In con-
trast, Metric3Dv2 and Sapiens produce results that closely 
approximates the ground truth.

2. Avatar Reconstruction

We evaluate the geometric quality of avatar re- 
construction. We use the RANA[18] dataset, a photorealistic 
synthetic dataset of clothed humans that provides normal 
maps, camera parameters, and SMPL[19] parameters. We se-
lect 5 subjects for evaluation. Each subject contains 150 
frames, with the first 100 frames used for Gaussian opti-
mization and the remaining 50 frames reserved for testing.

We conduct qualitative and quantitative comparison. We 
use Sapiens[10] as a model for monocular geometric con-
sistency due to its superior performance demonstrated in 
Sections 4.1.2 and 4.1.3. Table 3 quantitatively verifies that 
the monocular geometric consistency constraint improves 
both rendering quality and geometric quality. Specifically, 
after the GS process, the accuracy of the normal map is 
significantly improved. 

Figure 4 shows the qualitative comparison between the 
baseline and reconstruction with monocular consistency 
constraint. The normal map reconstructed with the monocular 
consistency prior is smoother, aligned to the ground-truth, and 
reducing noise in the texture of the rendered RGB images. 
Notably, it is challenging for the Gaussian to reconstruct 
wrinkles in clothing, but Sapiens’ precise normal and depth 
estimation plays a key role in improving the geometric quality 
of the clothing, especially in capturing the folds.

그림 3. 단안 깊이 예측 모델의 질적 비교

Fig. 3. Qualitative comparison of monocular depth estimation models

Sequence Method PSNR SSIM LPIPS Angular Mean (°) % within 11.25° % within 30° 

Subject_31
GART 30.8105 0.9847 0.0117 45.6566 2.0187 25.1155

Ours 31.7329 0.9864 0.0137 42.9615 1.9636 27.2319

Subject_41
GART 29.3117 0.9832 0.0188 46.0633 2.2215 25.2712

Ours 30.3213 0.9848 0.0206 41.7219 2.2367 33.2051

표 3. 단안 단서를 활용한 Gaussian Splatting 아바타 재구성 방식의 양적 비교

Table 3. Quantitative comparison of Gaussian Splatting avatar reconstruction using monocular cues
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Ⅴ. Conclusion

In this work, we propose to utilize monocular geometric 
cues to enhance surface alignment and geometric accuracy 
of reconstructed Gaussians in GS avatar reconstruction. To 
this end, we compare the performance of various monocu-
lar estimation models in human scanning dataset. We con-
clude that Sapiens, pretrained on enormous collection of 
human datasets, is the most powerful tool for human-cen-
tric tasks. Thus, we apply this model to GS avatar re-
construction and we demonstrate that monocular geometry 
cue estimated by Sapiens leads to smoother and aligned 
texture and normal of reconstructed Gaussians. 
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