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요 약

많은 약지도 학습 의미론적 영상 분할 방법은 이미지 분류를 위해 훈련된 네트워크에서 추출한 픽셀 수준 피쳐를 활용한다. 클래스
활성화 맵 생성, 픽셀 유사성을 기반으로 유사 피쳐 정의, 특징 군집을 기반으로 클래스 별 특징 프로토타입을 생성하는 데 픽셀 수준
피쳐가 사용 된다. 본 논문은 이전 연구들을 향상시키기 위해 친화도 기반 세분화를 이미지-클래스 별 프로토타입 생성에 통합하는 방
법을 제안하며, 이로 인해 클래스 별 특징 프로토타입으로 인한 클래스 활성화 맵 생성 성능이 크게 향상 된다. 이러한 프로토타입은
개선된 의사 레이블을 만들어내며, 궁극적으로 의미론적 영상 분할을 개선한다. 실험 결과는 기준 방법과 비교하여 의미 있는 개선이
있으며, 최신 기법과 유사한 수준의 결과를 가진다. 논문 코드는 https://github.com/IJS1016/AE_SIPE에서 제공한다.

Abstract

Many weakly supervised semantic segmentation methods rely on the pixel-level features extracted from networks trained for 
image classification. These features can be used to create class activation maps for semantic scores, define pixel affinity as feature 
similarities, and construct per-class feature prototypes based on feature clustering. This paper proposes a method that enhances 
previous works by incorporating affinity-based refinement into the generation of image-specific per-class prototypes, resulting in 
significantly improved representative strength. These prototypes then lead to improved pseudo-labels, ultimately improving 
segmentations. Experimental results show significant improvements compared to baseline methods, and are on par with recent 
state-of-the-art methods. The code is available at https://github.com/IJS1016/AE_SIPE.

Keywords : weakly supervised semantic segmentation, affinity enhancement, prototype exploration, self-supervised 
learning, image-specific
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I. INTRODUCTION

The goal of weakly supervised semantic segmentation 
(WSSS) is to learn how to generate pixel-level labels from 
limited supervision, usually in the form of image-level 
class labels[2]. The introduction of the Class Activation 
Map (CAM)[3] was a significant advancement towards ach-
ieving this goal, as it provides a means of generating pix-
el-level per-class scores based on image classification. 
However, it has been observed that meaningful CAM 
scores are often only assigned to a selective number of the 
most discriminative pixels, leading to limitations in directly 
using CAM as a segmentation solution.

Nonetheless, CAM proves to be a highly efficient techni-
que for utilizing image-level annotations to make pix-

el-level predictions. It has frequently served as a base upon 
which multiple methods have been proposed to enhance 
and optimize the acquisition of pixel-level class proba- 
bilities.

 One approach is to erase[5] or suppress[6] the more dis-
criminative regions, further mine discrimenative pixels. 
Another approach is to assign the limited discriminative re-
gions as seeds and expand them into full segmentation la-
bels using conventional region growing algorithms[7,8], 
based on the similarities of local pixel values. Further 
methods extended this approach by incorporating pixel 
adaptive refinement[4], random walks on semantic fea-
tures[9], or multitask inference of displacement and class 
boundary[9,10].

Many recent methods are based on self-supervised 
learning. A contrastive learning framework, with positive 
image pairs defined by pairing an image with its linear 
transform and negative pairs of different images, were ap-
plied in[11,12]. Another approach uses network features to 
create a per-class feature prototype-based alternative score 
map, providing supervision to guide the network towards 
generating consistent features with pixel affinities and im-
age-level class labels[1]. Combining these methods with 

Prototype Seeds à IS-CAM Affinity Enhanced IS-CAM (Proposed)Prototype Seeds IS-CAM Affinity Enhanced IS-CAM (Proposed)
그림 1. 자기 지도 이미지별 프로토타입 탐색(SIPE) 내에서 이미지별 CAM(IS-CAM)을 생성할 때 픽셀 수준의 유사성을 향상함
Fig. 1. We enhance pixel-level affinity when generating image-specific CAM (IS-CAM) within the self-supervised image-specific 
prototype exploration (SIPE)[1]
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others has shown benefits, as seen in recent works[11,12,1]. 
The improved CAM-like score maps generated by these 
methods are used to enhance pixel affinities and generate 
pseudo-labels[13,10], which are used to train a fully su-
pervised semantic segmentation network[14].

In this paper, we propose a method to incorporate pix-
el-adaptive mask refinement (PAMR)[4] so that pixel affin-
ity is maximized when generating score maps within the 
self-supervised image-specific prototype exploration (SIPE) 
method[1]. Experimental results demonstrate that our pro-
posed method provides substantial improvements over the 
baseline method SIPE. We also propose additional mod-
ifications that further improve quantitative results.

II. RELATED WORK

Using image-level labels in WSSS tasks has the ad-
vantage of lower label generation burden compared to 
tasks using other labels. Consequently, research on 
learning image segmentation using image-level labels is 
actively progressing. Most existing techniques apply the 
CAM to generate semantic pseudo-masks. However, the 
conventional use of CAM in WSSS is limited to represent-
ing only distinctive parts. To address this limitation in 
WSSS, various methods have been proposed, such as 
Growing Seed Regions with Constraints, Erasing, Self-su-
pervised Manner, and Prototyping.

Growing Seed Regions with Constraints Growing Seed 
Regions with Constraints involves expanding regions 
around seeds that represent the object's location and refin-
ing them to predict pixel-wise labels that closely match the 
actual class object. In SEC[7], seeds are used to expand re-
gions, and a Conditional Random Field (CRF) is employed 
to explore object boundaries based on the probability of ob-
ject existence and color information per pixel. This process 
aims to predict masks close to the actual objects.

Erasing Conventional CAM represents only the most dis-

tinctive parts of an image. To broaden the CAM area, the 
Erasing method involves regenerating CAM by covering 
the initially created CAM area with masked images. This 
method, known as Adversarial Erasing (AE)[5], expands the 
expected object area.

Self-Supervised Manner Most WSSS techniques utilize 
only one pre-processed image for learning. The Self-su-
pervised Equivariant Attention Mechanism (SEAM)[11] im-
proves performance by using CAM results obtained from 
both the original and transformed images together.

Prototype Several techniques, such as Pixel-to-Prototype 
Contrast (PPC)[12], SIPE[1], define CAM-based prototypes 
for each class and utilize them for learning. PPC[12], based 
on the SEAM[11] technique, defines prototypes for each 
class using the top CAM-scored pixels, enhancing 
SEAM[11] performance. Regional Semantic Contrast and 
Aggregation (RCA)[25] defines class prototypes based on 
CAM and uses a memory bank containing training in-
formation from the entire dataset to improve CAM. SIPE 
[1] defines prototypes for each class per image, improving 
IS-CAM generation from conventional CAM. Defining 
prototypes for each class allows recognizing features not 
captured by CAM and removing noise.

Research utilizing prototypes for WSSS is actively pro-
gressing, and this paper enhances performance by generat-
ing improved prototypes based on SIPE[1].

III. PROPOSED METHOD

1. Framework

A visual summary of the proposed method is presented 
in Fig. 2. The baseline method, SIPE[1], comprises 1) the 
encoder module which generates pixel-level features, 2) the 
image classification module, which provides image-level 
supervision and generates the CAM, 3) the structure analysis
module, which generates semantic structure seeds, and 4) 
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the prototype module, which generates image-specific 
per-class prototype features and pixel-level per-class 
scores, denoted as image-specific CAM (IS-CAM). We 
note that we are using our own terminology, which we be-
lieve provides a more intuitive understanding of the 
framework. 

In the proposed method, we incorporate the affinity en-
hancement (AE) module to the framework. In the AE mod-
ule, a refined IS-CAM is generated, which is then used to 
generate refined region seeds, which are used to refine the 
prototypes and generate an improved IS-CAM. To aid the 
description of the AE module in 2.2, we provide a brief 
summary of the modules of SIPE[1] as follows:

Encoder comprises a backbone CNN, pre-trained on im-
age classification. The feature tensor generated from this 
encoder  for the input image  is denoted as , 

and each feature vector at grid coordinate is denoted 

as .
Classification comprises a layer to compute the CAM, 

and the global average pooling layer to connect the CAM 
with the image-level supervision through the classification 

loss.
Structure analysis relates the spatial distribution of fea-

tures to the CAM to create seeds for prototypes. The pix-
el-wise spatial structure of grid coordinate  is first de-
fined as  with the cosine similarity 
function  being broadcast for the elements of . This 
is then compared to CAM to determine the semantic struc-

ture seed label, denoting inter-

section-over-union with the  for the kth class.

Prototypes  are generated as  denotes 

the set of coordinates with That is, 

 is the mean of the features with seed label k. The 

IS-CAM  is defined as  .
Training loss comprises the classification loss, defined as 

the cross-entropy between ground truth and the inferred im-
age-level labels, and the general-specific consistency 
(GSC) loss, defined as the pixel-level L1 distance between 
the initial CAM  and refined IS-CAM , for all 
classes k.
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그림 2. 제안된 방법의 요약, 자기 지도 이미지별 프로토타입 탐색 (SIPE)[1] 프레임워크 기반으로 픽셀 적응형 마스크 정제 (PAMR)[4]를 사용해 유사성
기반으로 프로토타입을 강화하여 성능을 향상함
Fig. 2. Visual summary of the proposed method. We build upon the previous framework of self-supervised image-specific prototype exploration 
(SIPE) method[1] to enhance prototypes based on affinity using pixel-adaptive mask refinement (PAMR)[4], leading to substantial improvements 
in quantitative evaluations
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2. Affinity Enhanced Image-specific CAM

Within the AE module, PAMR[4], which is essentially bi-
lateral filtering[15] on the semantic labels, is applied to the 
refined IS-CAM ̃Mk. PAMR is defined as follows:

           (1)

where the affinity kernel  is a function based on the dif-

ferences in image pixel values , 

with a normalization term W ensuring that . 
 denotes the local neighborhood of , which is defined 

as a combination of multiple 3×3 windows with varying 
dilation rates.

The further refined CAM  is obtained by iteratively 

applying PAMR n times, as . Using , 

we redefine seed labels as  to compute AE 

prototypes as . The final affinity-en-

hanced IS-CAM, which we term AE-IS-CAM, is computed 

as . Examples that highlight the im-

provements from  to  and from  to  are depicted 
in Fig. 1.

3. Additional Modifications

We also apply further minor modifications regarding the 
details of encoded features, normalization of refined (AE) 
IS-CAM, and rescaling of background scores. We observed 
these modifications result in small improvements in the 
quantitative evaluations.

Structure Analysis with Hierarchical Features: In SIPE 
[1], only features from the last layer (semantic features) are 
used in structure analysis, while the concatenation of pro-
jected features generated from all internal layers 
(hierarchical features) are used in prototype and IS-CAM 
generation. However, we use hierarchical features for struc-

ture analysis as well as prototype, IS-CAM and 
AE-IS-CAM generation.

IS-CAM Normalization: As the cosine similarities be-
tween features and prototypes may not range from the full 
range of [0, 1], we apply min-max normalization on the 
AE-IS-CAM.

Rescaling of Background Scores: We observed back-
ground scores to be generally higher than the foreground 
class, as background regions may be more diverse in 
appearance. We thus rescale the background class activa-
tions by a factor of 0.8.

Ⅳ. EXPERIMENTS

1. Experimental Settings

Implementation: The experiments were conducted on 
two Titan RTX GPUs, using an implementation based on 
the source code provided by the authors of[1], built on the 
PyTorch framework. The encoder module utilized a 
pre-trained ResNet-101[16] as the backbone network. 
Training employed standard SGD optimization with a mo-
mentum of 0.9 and weight decay of 1e-4. The learning rate 
was set to 1e-2 for the pre-trained layers and 1e-1 for the 
layers in feature concatenation and the final classification 
layer. The PAMR process underwent 10 iterations, and a 
set of {1, 2, 4, 8, 12, 24} dilation rates defined .

Multi-stage Pipeline: The complete segmentation pipe-
line consisted of three stages: 1) the proposed method for 
initial pseudo label construction, 2) the IRN[10] for refining 
the initial pseudo labels, 3) the DeepLabV3[17] trained using 
the refined pseudo labels.

Dataset: The PASCAL VOC 2012 segmentation dataset, 
widely recognized as the standard benchmark for WSSS, 
was used. This dataset comprises 21 classes, including the 
background, with 1,464, 1,449, and 1,456 images in the 
train, validation, and test sets, respectively. To enhance 
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training, the augmented train set containing 10,582 images[18] 
was used. Performance was evaluated using mean Intersection 
over Union (mIoU), and the mIoU score on the VOC test set 
was computed through the official evaluation server.

2. Comparative Evaluation

Quantitative evaluation results are summarized in Table 
1. The incorporation of the AE module alongside the in-
troduced modifications leads to improvements of 2.2% and 
1.4% points over the baseline[1] on the validation and test 
sets, respectively. Qualitative comparisons against the base-
line are depicted in Figures 1 and 3. These examples illus-
trate instances where the proposed method yields enhanced 
segmentations by more effectively distinguishing both the 
background and the semantic classes of foreground objects.

Model Pub. Backbone Val Test

SSWS[4] CVPR'20 WideResnet38 62.7 64.3

SEAM[11] CVPR'20 ResNet38 64.5 65.7

AdvCAM[19] CVPR'21 ResNet101 68.1 68.0

CSE[20] ICCV'21 ResNet38 68.4 68.2

CPN[21] ICCV'21 ResNet38 67.8 68.5

PPC[12] CVPR'22 ResNet38 67.7 67.4

AMN[22] CVPR'22 ResNet101 69.5 69.6

RecurSeed[23] ArXiv'22 ResNet101 72.8 72.8

SIPE[1] CVPR'22 ResNet38 68.2 69.5

SIPE[1] CVPR'22 ResNet101 68.8 69.7

AE-SIPE Proposed ResNet101 71.0 71.1

표 1. 제안된 기법 (AE-SIPE)과 SOTA 모델 간의 PASCAL VOC 2012 
데이터셋결과비교, 공정한비교를위해이미지수준지도사용한모델들과
비교함
Table 1. Comparative evaluation of proposed AE-SIPE with SOTA on 
PASCAL VOC 2012 dataset. Models that rely only on image-level su-
pervision are included for fair comparison

Image Ground truth SIPE AE-SIPE (Proposed)Image Ground truth SIPE AE-SIPE (Proposed)
그림 3. 기준 SIPE[1] 및 제안된 방법의 PASCAL VOC 2012 데이터셋 이미지 세그멘테이션 레이블 결과
Fig. 3. Qualitative results of segmentation labels for sample images of the PASCAL VOC 2012 dataset for the baseline SIPE[1] and the 
proposed method
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3. Ablative Study

Model Train Train+CRF[13]

Baseline[1] 58.6 64.7

+Affinity Enhancement 64.2 66.6

+Hierarchical Features 65.4 66.9

+IS-CAM Normalization 65.4 66.9

+Background Rescaling 65.8 67.8

표 2. 제안된방법의기준 IS-CAM 및 AE-IS-CAM의 PASCAL VOC 2012 
훈련 세트에서의 제거 성능(mIoU %), [13]에 의해 정제된 결과
Table 2. Ablation performance (mIoU %) of the baseline IS-CAM and 
AE-IS-CAM of the proposed method on the PASCAL VOC 2012 train 
set, refined by [13]

Module Train Train+CRF[13]

(Pr, IS) (Baseline[1]) 58.6 64.7

Baseline+(Pr, IS) 59.5 65.1

Baseline+(Pr, IS, PAMR, Pr, IS) 56.6 58.7

Baseline+(PAMR, Pr, IS, Pr, IS) 62.3 65.4

Baseline+(PAMR, Pr, IS) (AE) 64.2 66.6

표 3. PASCAL VOC 2012 훈련세트에서 [13]에의해정제된 PAMR, 프로
토타입(Pr) 및 IS-CAM(IS)의 다양한 조합에 대한 유사성 향상(AE) 비교.
Table 3. Comparison of various combinations of PAMR, prototype (Pr) 
and IS-CAM (IS) comprising affinity enhancement (AE) on the PASCAL 
VOC 2012 train set, refined by [13].

In this section, we delve into the specific effects of 
each proposed components: AE, structure analysis with 
HF, IS-CAM normalization, and background rescaling, 
as part of ablative analysis, presented in Table 2. Our 
observations highlight that the primary improvements 
from the AE module, with marginal enhancements aris-
ing from supplementary modifications. We also provide 
results from various combinations of PAMR, prototype 
generation, and IS-CAM generation, which constitute the 
submodules of the AE module, in Table 3. Notably, iter-
ations of PAMR or prototype, and IS-CAM generation 
did not consistently yield improvements. The optimal re-
sults were achieved through the proposed AE module.

Ⅴ. DISCUSSION

In the case of AE-SIPE, the utilization of the conven-
tional prototype generation technique serves to eliminate 
less significant areas, while simultaneously leveraging the 
PAMR[4] that utilizes the RGB characteristics of prominent 
areas. These complementary operations effectively enhance 
performance.

In the comparative evaluation in Table 1, highlights that the 
RecurSeed method[23] attains the highest performance. This 
method employs PAMR[4] for refining pseudo-labels, coupled 
with a self-correlation map generation(SCG) module[24]. 
Coincidentally, this SCG process, initially proposed for weakly 
supervised object localization, bears resemblance to the struc-
ture analysis module in SIPE[1]. Upon Further comparison re-
vealed that while prototypes are used to generate pseu-
do-semantic segmentation labels in the proposed AE-SIPE, 
RecurSeed employs a decoder to infer these pseudo-labels. 
Additionally, while iterations improve results in RecurSeed, 
they do not consistently do so in the proposed method.

 Also, the impact of AE is not always beneficial. When 
the initial Seed Region misclassifies areas outside the ac-
tual class existence region as the class, and these areas are 
extensive, there is a tendency for AE to further expand the 
erroneously predicted areas. Examining the sofa class in 
the third row of Fig. 3, it is evident that the initial Seed 
Region misclassified the gift box area as the sofa class. 
Through AE, the misclassified area as a sofa is expanded, 
resulting in a broader misclassification area compared to 
the original SIPE[1]. Additional techniques should be con-
sidered to address and improve this phenomenon.

We believe that the prototype approach offers simplicity, 
while the decoder approach may offer greater capacity. 
There exists a relative scarcity of works that explicitly ad-
dress the decoder structure within the self-supervised 
framework for WSSS, warranting further research. 
Additionally, we aim to identify refinement processes ame-
nable to iteration for enhanced performance improvements.
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